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Abstract-ln the present investigation, an enthalpy formulation is applied to the solidification process of 
an arbitrarily shaped casting in a mold-casting system. The effect of thermal contact resistance existing at 
the mold-casting interface is also studied. All of the computations are performed on a Cartesian coordinate 
system without recourse to coordinate transformation or grid generation for the arbitrary shape of the 
moldxasting interface. A single region method based on the weighting function scheme is found to solve 
this mold-casting conjugate heat transfer problem quite eflicientiy. A few cases are conducted to study the 
effects of the Stefan number, the thermophysical properties and the thermal contact resistance (at the 
mold-casting interface) on the solidification processing. The numerical result of the moving solidification 
front is investigated for each case. To examine the performance of the present numerical technique in a 
particular respect, chill blocks are employed at some locations inside the mold such that more than one 
isoiated liquid region could exist in the casting during the solidification processing. Even for such 
a ‘multiple-region’ problem, the present numerical method shows good performances. No additional 

computational effort is needed as compared with the cases without chill blocks. 

INTRODUCTION 

HEAT TRANSFER problems dealing with solidification of 
an arbitrarily shaped casting in a mold-casting system 
are encountered in many foundry practices such as 
the sand-mold casting and the die casting processes. 
In these casting processes, a molten metal is fed into 
a cavity having a specified geometry to produce a solid 
object with the desired shape upon solidification. Jt is 

well known that the heat transfer mechanism in the 
solidification process has a significant effect on the 
microstructure of the casting, the stripping time and 
the generation of residual thermal stress, etc. Unfor- 

tunately, the heat transfer phenomenon in casting pro- 
cessing is very difficult to observe from experimental 
studies due to the opaqueness and high melting point 
that most metals have. Under such a situation, 
numerical simulations have received considerable 
attention during the past decades. However, most of 
the techniques that have been developed for sol- 
idification problems such as those in refs. [l-9] pose 

numerical instability even for rectangular casting 
‘without’ mold. A detailed discussion on this point 
can be found in ref. [IO]. 

In mold-casting systems, there are three regions 
(namely, the mold, the solidified metal and the molten 
metal) in the entire physical domain in the course of 
the solidification process. Under practical situations, 

all of these regions possess arbitrary shapes. To adapt 
to the complex geometries, grid generation techniques 
have been employed by many previous investigators. 
For instance, Kroeger and Ostrach [I l] used the 
method of conformal mapping to generate grid sys- 
tems for each of the solid and liquid regions in a 

continuous casting process. Gilmore and Guceri [ 121 
obtained grid systems for an angle bend and a ply 
drop by using Poisson equations. However, these 
methods are very complex especially when the casting 
possesses a highly sinuous shape. To simplify the com- 
putations, the influence of the mold on the casting is 
estimated through the use of a boundary condition 
imposed on the mold<asting interface [ 11-l 3] instead 
of solving the heat conduction inside the mold. This 
treatment will undoubtedly introduce significant 
errors into the solution. In some commercial com- 
puter codes, both regions of casting and mold are 
approximated with brick-type mesh [l&16] such that 
computations can be performed on a Cartesian coor- 
dinate system. However, this approximation is restric- 
ted to the use of small grids. 

Generally speaking, the thermophysical properties 
are different in the above-mentioned three regions. 
Without particular treatment, the thermophysical 
property jumps existing at the interface of these 
regions would cause serious numerical instability. 
This situation will be even worse when the mold- 
casting interface has an arbitrary shape. In addition, 
the shrinkage of the casting and/or the thermal expan- 
sion of the mold during the solidification process 
would form gaps at the mold-casting interface. This 
gives rise to considerable thermal contact resistance. 
All of these facts render the numerical computations 
very difficult when solving the solidification problem 
of mold-casting systems. Fortunately, the weighting 
function scheme proposed in ref. [IO] solves problems 
with discontinuous thermophysical properties. In the 
use of this particular numerical scheme, the tem- 
peratures at the grid points are directly related to the 
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weighting factors in discretized equations 
dimensionless specific heat, /jC,i’(pC,)* 

specific heat [J kg~ ’ K ‘1 
a point defined in Fig. 2 
total thermal resistance in the interval 

[P. El 
dimensionless latent heat or fraction of 
liquid inside a control volume, 

W, 

VL’ 

total thermal resistance in the interval 

[W> PI 

x, Y 
.Y, _J 

ratio of the hatched region to the size 01 
control volume B, see Fig. 3 

coordinates [m] 

.1’ 

dimensionless coordinates, .Y = X/L and 
r = Y/l‘. 

(H-A)iAH 
H 

h 
K 
k 

L 
N 

4 

Greek symbols 

Z\H 
thermal diffusivity [m’ s ‘1 
latent heat of the PCM [J kg ‘1 

AX, A2y mesh size of the grid system 

At time step 
0 dimensionless temperature, 

(T-T,)l(T,,-7-x) 

0, dimensionless freezing point, 

CT,-T, )l(To- L) 
A sensible heat [J kg--‘], [:l Cr dT 

P 
PCM 

R, 

r, 

total enthalpy [J kgg’], H = A if T < T, 
and H= A+AHif T> T, 
grid size, h = As = A?: 

thermal conductivity [W m ’ K ‘1 
dimensionless thermal conductivity, 

K/K* 
length of the mold [m] 
a point defined in Fig. 2 
total thermal resistance in the interval 

[P> Nl 
point (-5, .v,I 
phase change material 
thermal contact resistance at the mold- 

casting interface [m’ K W ‘1 
dimensionless thermal contact resistance, 

R, K*/h 

” P density [kg m ‘1 
0 .stq/( I + Be) 
7 dimensionless time, I cra*if,‘. 

Superscripts 
* thermophysical properties of the liquid 

PCM at its freezing point T:. 
S 
s 

S, 

Ste 
T 
t 

Ti 
T T 

a point defined in Fig. 2 
aspect ratio 
total thermal resistance in the interval 

[S. PI 
Stefan number, C; (T,,- T,, )/AH 
temperature [K] 
time [s] 
freezing point of the PCM [K] 

Subscripts 
0 quantities at previous time step, Z-AZ 

C chill block 
E, N, S, W points E, N, S and W, 

respectively 

i. .i quantities at point P(.u,, _r,) 
m mold 

‘0, ’ 1 
initial and ambient temperature [K], P point P 

T, < T,- < T, R right-hand side of an algebraic 

W a point defined in Fig. 2 equation. 

NOMENCLATURE 

total thermal resistances between two adjacent grid 
points. Hence, the arbitrary shape and the thermal 
contact resistance at the mold-casting interface can 
be easily treated without the need of coordinate trans- 
formation or grid generation. This seems to be the 
unique feature of the weighting function scheme. In 
the present study, the weighting function scheme [IO] 
is employed to solve the solidification process of an 
arbitrarily shaped phase-change-material (PCM) 
inside a rectangle mold. For simplicity, the PCM is 
assumed to have a distinct freezing point. The latent 
heat evolved from each control volume during the 
solidification process is rigorously evaluated by using 
the enthalpy formulation proposed in ref. [lo]. This 
enthalpy method has been proven to provide both 
good numerical stability and accuracy elsewhere [IO]. 

Numerical results of the moving solidification fronts 
inside the PCM are presented under various par- 
ameters The effects due to the use of chill blocks are 

also investigated. 

THEORETICAL ANALYSIS 

In many casting problems, the molds possess simple 
external shapes such as a cylinder, cube or rectangular 
parallelepiped, even though the casting is arbitrarily 
shaped inside. In the present investigation, a typical 
two-dimensional mold-casting system of this type as 
shown in Fig. 1 is studied. The size of the mold is 
0 < X < L and 0 < Y < 0.75L. The rectangular uni- 
form mesh system of 97 x 73 grid points provided in 
Fig. 1 is employed for the present computations. For 
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FIG. I. A typical mold-casting system with a Cartesian grid 
system of 97 x 73 grid points. 

simplicity, it is assumed that the cavity is initially filled 
with a superheated PCM at a uniform temperature 

T,,, while the mold is at the ambient temperature T, 
that is below the freezing point of the PCM. Sol- 
idification thus starts from the mold-casting interface 
toward the centroid (roughly) of the casting as time 
elapses. During the solidification process, the outer 

surface of the mold is maintained at the ambient tem- 
perature T,. The natural convection inside the liquid 
phase of the casting is assumed negligible. 

After imposing these assumptions and introducing 
the following dimensionless variables 

x = X/L y = Y/L k = K/K* c = pC,/(pC,)* 

Ste = C:(T, - T,)/AL\H 0 = (T- T,)/(T,, - T,) 

c7 = &e/(1 +Ste) z = tm*/L2 (1) 

the energy conservation equations in the casting and 
the mold are expressible, respectively, as 

where the subscript ‘m’ appearing in equation 

(2) 

(3) 

(3) 
denotes the thermophysical properties of the mold. 
The associated initial and boundary conditions are 

0(x, y, 0) = 1 inside the casting 

0(x, y, 0) = 0 inside the mold 

WY, 7) = Q(l,Y, 7) = 0 

6(x, 0,7) = 0(x, s, 7) = 0. (4) 

In the dimensionless transformation (1), the super- 
script ‘*’ denotes the thermophysical properties of the 
liquid phase of the PCM at its freezing point T: . As 
suggested by Lee and Tzong [lo], the dimensionless 
time 5 is defined in terms of the Stefan number. Such a 
treatment has been proven to provide good numerical 
stability [lo]. 

It is noteworthy that equation (2) covers the entire 
PCM including the liquid-solid interface. This has 
been proven by Shamsundar and Sparrow [l] and 

Voller and co-workers [4, 51. The two terms on the 

left-hand side of equation (2) are the changing rates 
of the latent heat and the sensible heat during the 

solidification process. They are split from the total 
enthalpy H (i.e. H = A if T < Tf and H = A+ AH if 
T > Tf). The symbol f is the dimensionless latent 
heat (H-A)/AH. Its value is unity in the liquid phase 
and zero in the solid phase. Thus, f’ stands also for 
the fraction of liquid phase. More information on this 
particular enthalpy formulation can be found in ref. 

1101. 
The energy conservation for the mold is a con- 

ventional transient heat conduction problem as pre- 
sented in equation (3). In addition to equations (2)- 
(4), there could be a thermal contact resistance 
between the mold and the casting. As mentioned earl- 
ier, an air gap forms at the moldxasting interface due 
to the contraction of the casting and the expansion 

of the mold. The formation of an air gap significantly 
decreases the heat transfer rate from casting to mold. 
Hence, the thermal contact resistance at the mold- 
casting interface cannot be neglected in practical 
applications. Unfortunately, very little information is 
available on the growth, distribution and size of the 
air gap during the solidification process. Isaac et al. 
[ 17, 181 estimated the thermal contact resistance from 

the directly measured air gap. Similar attempts were 
also undertaken by Flach and Ozisik [19, 201 based 
on known temperature data at a few locations inside 
the solids. The air gap for castings of rectangular 

shape as studied by Isaac et al. [17, 181 was found 
essentially increasing as time elapsed. However, this 

may not be true for a complex casting as illustrated 
in Fig. I. No air gap is expected in a region where 
the casting has a cavity with a small mouth (see the 
location indicated by C in Fig. 7 for example). Hence, 
the thermal contact resistance of refs. [ 17-201 cannot 
be directly applied on the present problem. More stud- 
ies on the variations of thermal contact resistance are 
needed. The purpose of this paper is to propose 
a numerical technique that efficiently solves the 
solidification of arbitrarily shaped casting in mold- 
casting system. Although the present methodology 
handles the variable thermal contact resistance with- 
out difficulties, constant thermal contact resistance 
is assumed in the present computations due to the 
lack of reliable information. 

NUMERICAL SOLUTION METHOD 

Equations (2)-(4) constitute a conjugate heat trans- 

fer problem for the mold-casting system. Equation 
(2) is for the casting, while equation (3) applies to the 
mold. As demonstrated in Fig. 1, a uniform Cartesian 
grid system (xi, y,) with xi = (i- l)h and y, = (j- 1)h 
is employed for the entire physical domain, where 
h = Ax = Ay is the step size. Figure 2 shows a grid 
point P(xi, yj) and its four neighbors (points W, E, S 
and N) with E denoting east, etc. The dashed lines are 
the boundaries of the control volume of point P. This 
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FIG. 2. A solidification front passing through a control 
volume. 

control volume will be referred to as ‘the control 
volume P’ in the present study for simplicity. 

If all of the five points and the control volume P 

are located in the casting, then equation (2) can be 
discretized by using the weighting function scheme 
proposed in ref. [IO]. This leads to the algebraic equa- 
tion for pure heat conduction case 

clw = h/W, uE = h/Ei a, = h/S, aN = h/N, 

up = -aw-a,-a,-a,-nciJ~2/A~ 

aR = (h’lA.z)[(l -~)(f-.f~)~.,-~~~~~~),.,l (6) 

where the subscript ‘0’ denotes quantities at the pre- 
vious time (TV = ~-AZ) and 

It appears that the quantities RJ8, I$, Si and N, defined 
in equations (7) are, respectively, the overall thermal 
resistances in the intervals [W, P], [P, E], [S, P] and 
[P. N]. Due to the lack of detailed information about 
the variation of the thermal conductivity k between 
two adjacent grid points, the thermal resistance l/k is 
assumed to have a linear variation in each of the 

intervals. Hence 

When control volume P covers both casting and 
mold, the relationship among the temperatures of 
point P and its four neighbors would be governed by 
both equations (2) and (3) as well as the thermal 

contact resistance at the moldxasting interface. Sup- 
pose grid point A is on one side of the moldxasting 
interface, while one of its neighbors (point B) is on 
the other side as illustrated in Fig. 3. Generally speak- 
ing, the mold-casting interface would not ‘happen’ to 
coincide with the interface of two adjacent control 

volumes. This implies that part of control volume A 
(see the right upper corner, for instancej might be 
inside the casting, when point A is located in the 

mold. Under such a situation, the temperature and 
the thermophysical properties of this particular part 
could be very diKerent from that of point A, especially 
when the thermal contact resistance is large at the 
mold--casting interface. Hence, the latent heat and 
sensible heat evolved from this part during the 
solidification process should not bc treated as heat 
generation from point A. In the present study, this 
energy evolution is regarded as that belonging to con- 

trol volume B. The sensible heat released from the 
mold region covered by control volume B (see the left 
lower corner of control volume B) is treated similarly. 
As a result, all of the energy evolution from the 
hatched region as shown in Fig. 3 is regarded as heat 
generation from control volume B. Based on this 

a, = 2k,k,/(k,,, +kp) 

LIE = 2kEkdkE +k,) Mold 

as = 2k,k,l(k, + k,) 

aN = 2k~k~~(k~+k~j. (8) 

However, for most PCM, the thermal conductivity of 
the solid phase is quite different from that of the liquid 
phase. Thus, equations (8) would not be true if 
the solidification front is located inside the control 
volume P as illustrated in Fig. 2. Suppose the -.- 
solidification front intersects the line WP at point W* 
and the line % at point S*, i.e. 0% = Ox = U,-. Under 

FIG. 3. Two adjacent control volumes covering both the 
mold and the casting. 

such a situation, the overall thermal resistance in 
[W. P] should be evaluated from 

The assumption of linear thermal resistance variation 

in each of the subintervals [W, W*] and [W*. P] yields 

+2~kpk(f):)/fk,,+k(ll:)) (IO) 

where ;I = W*P;‘WP and the notations k((l; ) and 
k(t):) represent the thermal conductivity at (IV and 

(?,t. The weighting factor rr, can be evaluated in a 
similar manner. In case point P and its four neighbors 

are all located inside the mold. the discretized equa- 
tions would bc the same as equations (5)--Q) with 
i7= 1. 



Solidification of casting in a mold-casting system 2799 

assumption, the discretized energy equation for point 
B(xi, vi) is expressible as 

(aW)Bu!m l,,+(%)BBi+ I,j+CaS)B6~,j- I 

+("Nir)Boi,,+l +(aP)Boi,j = C"R)B Cl11 

(QW)B = h/f% WB = WE, (& = h/S, 

@oh =hlN, @h = -(ff~?~-(~~)~ 

-(as)B-(aN)R-~aci~jh2/Az 

(~R)B = (‘2/A~)[(l -~)(.f-f~)i,j-~~~(c~,)i.jl (12) 

where point Pcoincides with point Band the notations 
(c+&, (cI~)~, (+)a, etc. represent the weighting factors 
when the governing equation is discretized at point B. 
The symbol w is the ratio of the hatched area to the 
area of control volume B. It could have a value of 
larger than unity. The f-value in equation (12) is the 
ratio of the liquid area inside the hatched region to 
the area of control volume B. This implies that the f- 
value is always equal to or smaller than W. 

It should be noted also that there might exist a 
significant thermal contact resistance at the mold- 
casting interface. Thus, care must be exercised in 
computing the integrations in equations (7). Let Q 
be the intersection point of the mold--casting inter- - 
face and the line AB. From equation (7), the overali 
thermal resistance W, can be evaluated by 

“B 

J 
idx (13) 

Qk 

where r, = R,K*/h is the dimensionless thermal con- 
tact resistance at the mold-casting interface (point Q). 
The overall thermal resistance S, in the interval lying 
to the south of point B can be determined similarly. 
The algebraic equation for point A is the same as that 
for point B (equations (11) and (12)) with (r = 1 and 
IV being the ratio of the dotted area (see Fig. 3) to the 
area of control volume A. Due to the assumption of 
no natural convection effect, the weighting factors 
(~1~)~ and (cI~)~ have the same value. 

After discretizing the governing equations on each 
of the grid points and imposing the boundary con- 
ditions, one obtains a system of algebraic equations 
in the matrix form 

where [A] is a square matrix of order M and {B) is 

an M dimensional vector with M being the total 
number of grid points. In the present study, M has 
a value as large as 97 x 73 = 7081. Fortunately, the 
coefficient matrix [A] has only five nonzero diagonals. 
Hence, equation (14) can be efficiently solved by 
employing the SIS solver 1211. The numerical pro- 
cedure is essentially the same as that presented in ref. 
[lo] for the case without mold. 

RESULTS AND DISCUSSION 

Numerical results were obtained for the mold-cast- 
ing system as shown in Fig. 1 under various important 
parameters such as Stefan number (Ste), thermal con- 
tact resistance at mold-casting interface (T,.) and ther- 
mophysical property of the mold (k,, and c,,,). The 
effects due to the use of chill blocks were also inves- 
tigated. The present study emphasizes the effects of 
the~ophysi~ai properties of the mold on the sol- 
idification process. In addition, the effects of tem- 
perature-dependent thermophysical properties of the 
casting have been studied in detail in refs. [lo, 221. 
Hence, the thermophysical properties were assumed 
constant inside the entire casting including both liquid 
and solid phases for convenience. For simplicity, the 
dimensionless freezing point Of = 0.8 was used for all 
of the cases studied in the present investigation. 

Figure 4 presents the solidification fronts at each 
time step under the parameters, Ste = 5, r, = 0, 
k, = 2, c, = 2 and the time step AZ = 0.002. The solid 
curves are the solidification fronts obtained by using 
the grid size of h = l/96, while the dashed curves are 
based on a coarser grid h = l/48. Thanks to the use 
of the particular enthalpy formulation proposed in 
ref. [lo], the numerical results of solidification front 
possess smooth profiles as observable from Fig. 4. 
From the solid curves, it is seen that the solidi~cation 
front at each time step fnrms an enclosed curve. It 
moves inward from the mold-casting interface to a 
location near the centroid of the casting. At the very 
beginning of the solidification process, the freezing 
rate of the casting is quite fast due to large temperature 
difference. Such a situation is parti~ulariy pronounced 
at the northeast corner of the casting where the surface 
to volume ratio is large. This is consistent with the 
physical reasoning. 

From a comparison between the solid and dashed 
curves shown in Fig. 4, the numerical results are seen 
to change onfy a little even if the grid size is doubled. 
In the case of the coarse grid system, however, there 
would be not enough grid points to handle the profile 
of the solidification front when the casting is about to 
completely solidify. Hence, a heavy underrelaxation 

S&=5. r,=O. k,=2. cm=2 

As=O.O02 1 

FIG. 4. Influence of grid size on solidification fronts (with 
time increment 0.002) for Ste = 5, r, = 0, k, = 2, c, = 2. 



2x00 K. Y. T7ONCi and s. L. Lt’t 

Ste=5, r,=O. k,=Z, cm=2 

Ax=Av=h= l/S6 

FIG. 5. Influcncc of time step size on the solidification fronts 
(with time increment 0.002) for Stc~ = 5. r, = 0, k, = 2, 

(‘,I, - 2. 

factor (small SOR) is generally needed for a better 
solution convergence rate. To achieve both high res- 
olution and good numerical stability, the grid system 

with the step size h = l/96 (see Fig. 1) is used hereafter 
in the present study. 

To examine the influence of the time step A7 on the 
resulting solidification front, the same problem as in 
Fig. 4 is resolved on a smaller time step (AT = 0.001). 
The.result is represented by the dashed curves in Fig. 
5 with a time-increment of 0.001. The result based on 

A7 = 0.002 is also presented in Fig. 5 with solid curves 
for comparison. It appears from Fig. 5 that the 
numerical result based on the present method is not 
sensitive to the time step. In fact, a larger time step 
would provide a better numerical stability in the use 
of the present enthalpy method. For instance, in the 
present case, the optimum successive over-relaxation 
factor is about SOR = 0.2 for A7 = 0.002 as com- 
pared to SOR = 0.1 for AT = 0.001. This important 
feature of the present enthalpy formulation has been 

well-discussed in refs. [ 10, 221. 
Figure 6 shows the numerical result of solidification 

fronts in the case when the Stefan number is decreased 
to Str = 1, while all of other parameters are main- 
tained the same as in Fig. 4. As defined in equation 
(I), the Stefan number stands for the relative import- 

Ste=l. r,=O. k,=Z, cm=2 n 

ante of sensible heat and latent heat. A small Stethn 
number means Iargc latent heat. Thus, in the cast with 
;I small Stefan number it is expected that the casting 
will take longer to completely solidify. This can bc 
clearly seen by comparing the solidification front in 
Fig. 6 with that in Fig. 4. For instance. the total 
solidification time is 7 = 0.0210 (r = O.O42OL’ix*) for 

Stc = 1 as compared to 7 = 0.0121 (t = O.O145L’,x*) 
for Ste = 5. In the case of a small Stefan number. 

when the solidification is going to tin&h. the entire 
liquid ‘pool’ would be essentially isothermal due to 

large latent heat evolution. For example, for the case 
of SW = I. the maximum tempcraturc in the liquid 
phase is O,,,;,, = 0.8051 at 7 = 0.012, that is. only 
slightly higher than the freezing point 0, = 0.X. Under 
such a situation, the location of the solidification front 
is very difficult to identify from the temperature solu- 
tion. This interpolation error might have produced 
the sinuous profiles for the solidification front at 
7 > 0.012 as observable from Fig. 6. 

The solidification fronts based on the parameters 
Str = 5, I, = 1, k,, = 2, cm = 2 are presented in Fig. 
7. This set of parameters is the same as that in Fig. 4 
except for the thermal contact resistance rC = 1. The 

time step used in the computations is A7 = 0.01. Like 
an insulator along the boundary of the casting. the 

thermal contact resistance prevents the conduction of 
heat from the casting to the mold. Thus, heat accumu- 
lates along the boundary of the casting such that the 
occurrence of solidification is depressed especially at 
the concave boundaries indicated by A, B and C where 
the casting has a small surface to volume ratio. This 
might account for the fact that solidification occurs 
only at some convex corners of the casting at Ihe 
beginning stage of the casting process. Due to this 
situation, the solidification front could intersect the 
mold-casting interface (see the solidification front 
labeled ‘b’ for example). This characteristic is different 

from that of Fig. 4. a case without thermal contact 
resistance. Physically speaking, without the ‘pro- 
tection’ of thermal contact resistance, the initial tem- 
perature jump (T,, - T, ) at the mold-casting interface 
would start the solidification immediately along the 

ste=fi, r,=l, k&. cm=2 

Ar=O.Ol 

FIG. 6. Solidification fronts with time increment 0.002 for 
SIP = 1. r, = 0, k, = 2, c,, = 2. 

FG. 7. Solidification fronts with time increment 0.01 for 
Sic, = 5, r, = 1. k,,, = 2. c,,, = 2. 
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boundaries of the casting. As a result, the sol- 
idification front is essentially parallel to the mold- 

casting interface at the beginning stage of sol- 
idification process as observable from Fig. 4. From 
Fig. 7, the thermal contact resistance r, = 1 is seen to 
increase the total solidification time from 7 = 0.0121 
(t = O.O145L*/a*) to 7 = 0.0824 (t = O.O988L*/a*) as 
expected. 

Slow solidification rate can also be encountered 
when the mold has poor thermal conductivity and/or 

specific heat. To clarify this point, the solidification 
fronts based on Ste = 5, r, = 0, k, = 0.2, c, = 0.5 are 
shown in Fig. 8. The time step used in the com- 
putations was A7 = 0.005. From Fig. 8, it is seen that 
the total solidification time increases to 5 = 0.0456 
(t = O.O548L*/a*) due to the poor thermophysical 

properties of the mold. However, the characteristics 
of the solidification fronts in Fig. 8 are different from 
those in Fig. 7 in some respects. Due to the lack of 
thermal contact resistance, the solidification front in 
Fig. 8 is roughly parallel to the boundary of the casting 
as in Fig. 4. However, heat might also accumulate 
at the strongly-concave boundaries, if the thermal 
conductivity of the mold is sufficiently small. Such a 
phenomenon can be found in the regions indicated by 
A, B and C in Fig. 8. 

From Figs. 7 and 8, it appears that solidification 
near the concave boundaries of the casting might be 
depressed if the mold has either poor thermophysical 
properties or large thermal contact resistance. This 
situation would result in casting defects on the con- 
cave surfaces of the casting. Unfortunately, such a 
difficulty is encountered in many sand casting 
processes. One popular method in foundry technology 
is to put chill blocks inside the mold to improve the 
solidification rate near the concave surface of’the casr- 

ing. Figure 9 reveals the solidification fronts under the 
effects of three chill blocks that possess good ther- 
mophysical properties (k, = 5 and c, = 2). The 
locations of these chill blocks are shown also in Fig. 
9. In the computations, all of the physical parameters 
are the same as that in Fig. 8. From Fig. 9, one sees 
that the solidification rate near the concave surfaces 

ste=5. r,=o, &=O.Z. cm=05 c\ 

FIG. 8. Solidification fronts with time increment 0.005 for 
Sfe = 5, rC = 0, k, = 0.2, c, = 0.5. 

ste=5. r,=O. b=O.Z. cm=o.5 
A~=O.002, k,=5. cc=2 

FIG. 9. Effect of chill blocks on solidification fronts (with 
time increment 0.002) for Ste = 5, r, = 0, k, = 0.2, cm = 0.5, 

k, = 5, cc = 2. 

is significantly improved by the chill blocks. In 
addition, the total solidification time is reduced sig- 
nificantly from 7 = 0.0456 without chill to z = 0.0182 
with chills. During some time intervals, the liquid 

phase separates into two isolated regions due to the 
effect of chill blocks as observable from the curves 
labeled ‘b’ and ‘g’ in Fig. 9. The present numerical 
technique seems to pose no numerical difficulty for 
this ‘multiple-region’ problem. 

CONCLUSION 

An efficient enthalpy formulation developed pre- 
viously was employed in the present study for an 
arbitrarily shaped casting in moldsasting system. A 
particuiar treatment on the evolution of the latent 
heat was proposed for grid cells covering both mold 
and casting. Thanks to the use of the weighting func- 

tion scheme, all of the computations could be per- 
formed in the conventional Cartesian coordinates 
without recourse to coordinate transformation or grid 
generation. in addition, the weighting function 
scneme was found to solve the conjugate mold-casting 
system quite efficiently even in the presence of thermal 
conracr resistance at the moldxasting interface. From 
the numerical results, it is seen that for a casting 
having large iatent heat, quite a long time would be 
needed for the casting to completely solidify. In the 
presence of thermal contact resistance, heat accumu- 
lates along the boundary of the casting such that 
solidification occurs only at some convex corners of 
the casting at early stage of the process. As expected, 
both thermal contact resistance and the use of a mold 
with poor thermophysical properties depress the 
solidification rate. However, their sohdificdtion fronts 
show different characteristics. When either the mold 
has poor thermophysical properties or the thermal 
contact resistance is large, serious heat accumulation 
would occur on the concave surface of the casting. 
This undesirable situation can be improved by the use 
of chill blocks. Under some conditions, the liquid 
phase might separate into two or more isolated 
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regions. The present numerical technique solves such 
a problem as well. 
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SOLIDIFICATION D’UNE COULEE DANS UN MOULE DE FORME QUELCONQUE 

R&urn&-On applique la formulation enthalpique au mecnnisme de solidification d’une couiee dc forme 
arbitraire dans un moule. L’effet de resistance thermique de contact a I’interface moulc-coulee est aussi 
etudie. On conduit Ies calculs dans un s&me de coordonnees rectangul~~ires sans recours a unc trans- 
formation de coordonntes ou a une generation de grille pour une forme arbitraire de Tinterface. On considere 
quelques cas pour ttudier Ies effets du nombre de Stefan, des proprietes thermophysiques et dc la resistance 
thermique de contact sur I’evolution de la soIidification. L,es resultats numeriques sur Ic front mobile de 
solidification sont etudies dans chaque cas. On considere des blocs refroidisseurs en quelques endroits dans 
le mottle de facon qu’il puisse exister plusieurs regions liquides isolees pendant le mtcanisme de solidi- 
fication. M&me pour un tel probleme ‘multi-region’. la methode numerique prtsente montre de bonnes 
performances; iI n’y a pas besoin d’effort SuppI~ment~ire de caIcuI pour traitcr Ie cds par rapport au cas 

sans bloc rcfroidisseur. 
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ERSTARRUNGSVORGANG EINES BELIEBIG GEFORMTEN GUSSTEILS IN EINEM 
FORMGUSSTEIL-SYSTEM 

Zusammenfassung-In der vorliegenden Arbeit wird ein Enthalpie-Verfahren auf den Erstarrungsvorgang 
eines behebig geformten GuDteils in einem FortnGuDteil-System angewandt. Aullerdem wird der EinfluD 
des thermischen Kontaktwiderstands an der Grenzfliche zwischen Form- und GuDteil untersucht. Alle 
Berechnungen werden in kartesischen Koordinaten durchgefiihrt, trotz der willkiirlichen Form der 
Grenzflache. Ein Einzonen-Model1 ist zusammen mit Gewichtungsfunktionen in der Lage. das konjugierte 
Warmeiibertragungsproblem effizient zu l&en. In einigen Fallen wird der EinfluB der Stefan-Zahl. der 
thermophysikalischen Stoffeigenschaften und des Kontaktwiderstands (an der Form~GuOteil-Grenzflache) 
auf den Erstarrungsvorgang untersucht. Das numerische Ergebnis fiir die bewegliche Erstarrungsfront 
wird fur jeden Fall betrachtet. Urn die Ubereinstimmung der eingesetzten Numerik in einem ganz 
bestimmten Fall zu untersuchen. werden Kiihlsteine in der Form verteilt, so dal3 mehr als eine Flus- 
sigkeitsregion wahrend der Erstarrung auftreten kann. Sogar fur solche Mehrzonen-Probleme zeigt die 
numerische Mcthode gutes Verhalten. Verglichen mit den FZllen ohne Abkiihlsteine sind keine zusltzlichen 

Berechnungen notwendig. 

3ATBEPAEBAHAE OTJIHBKH HPOH3BOJIbHOti QOPMbI B CHCTEMAX 
KOKMJIb-OTJIHBKA 

AimoTauen-B HacToKweM nccneAoBaHmiypaBHeHHe Ann 3HTaJlbIIllr( npwMeHaeTca npe OIIHCaHHH npo- 

UeCCa 3aTBepAeBaHW OTnHBKH I,pOH3BOnbHOfi +OpMbI B CACTeMe KOKHnb-OTnHBKa. PaCCMaTpHBaeTCK 

TaKxe BnUIlHHe TeWIOBOrO KOHTaKTHOrO COnpOTABneHHK Ha rpaHHUe pa3Aena KOKHnb-OTnHBKa. Bee 
paC=IeTbI IIpOBOA5ITCSI B AeKapTOBOii CUCTeMe KOOpAHHaT 6es llepeXOAa K HOBbIM KOOpAHHaTaM H 6.23 

06pa30BaHWICeTKHAm lIpOH3BOnbHOti ~OpMbIrpaHHUbIpa3AWIa.~OKa3aHO,STO CO"pZKeHHaS 3aAa9a 

TeIUIOnepeHOCa B CHCTeMe KOKHnb--OTnHBKa pe"IaeTCSI C HCnOnb30BaHHeM CXeMbI BeCOBbIX +yHKUHk 

kCneAyeTCR BnHIlHHe YACna CTe+aHa, TM,O~H3ASeCKHX CBOkTB H TeIInOBOrO KOHTaKTHOrO COnpO- 

THBneHHK(HarpaHHUepa3Aena)Ha npOI&C% 3aTBepAeBaHHSIAnK HeCKOnbKBXCny=IaeB. B Ka,KAOM 113 HAX 
wicneHH0 0npeAenneTcn nonomenne neaxymerocn +poHTa 3aTBepAeBamia. C uenbio mxneAoBamix 

3@@KTHBHOCTH IT~AJIO~eHHOrO 'IHCneHHOrO MeTOAa XlpOBeAeHbI PaCYeTbI AJIll Cnyqa,, HCnOnb30BaHHB 

KOKUnbHbIX 6nOKOB,paCIIOnOxeHHbIX B KOKHlIe TaKBM o6pasoM, ST0 lTpH OTnHBKeB IIpOUeCCe 3aTBepAe- 

BaHWi MOryT IIpWyTCTBOBaTb 6onee 9eM OAliH mHAK&iti y'iaCTOK.nOKa3aHO,STO IIp‘ZACTaBneHHbIii SAC- 

JIeHHbIii MeTOA 3++eKTWB'ZH Aa)Ke AJIll PeIIIeHHK TaKOii 3aAa'iH,lTp&i 3TOM He B03HKaeT HeO6XOAHMOCTb 


