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Abstract—In the present investigation, an enthalpy formulation is applied to the solidification process of
an arbitrarily shaped casting in a mold—casting system. The effect of thermal contact resistance existing at
the mold—casting interface is also studied. All of the computations are performed on a Cartesian coordinate
system without recourse to coordinate transformation or grid generation for the arbitrary shape of the
mold-casting interface. A single region method based on the weighting function scheme is found to solve
this mold—casting conjugate heat transfer problem quite efficientiy. A few cases are conducted fo study the
effects of the Stefan number, the thermophysical properties and the thermal contact resistance (at the
mold-casting interface) on the solidification processing. The numerical result of the moving solidification
front is investigated for each case. To examine the performance of the present numerical technique in a
particular respect, chill blocks are employed at some locations inside the mold such that more than one
isolated liquid region could exist in the casting during the solidification processing. Even for such
a ‘multiple-region’ problem, the present numerical method shows good performances. No additional
computational effort is needed as compared with the cases without chill blocks.
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INTRODUCTION

HEAT TRANSFER problems dealing with solidification of
an arbitrarily shaped casting in a mold—casting system
are encountered in many foundry practices such as
the sand-mold casting and the die casting processes.
In these casting processes, a molten metal is fed into
a cavity having a specified geometry to produce a solid
object with the desired shape upon solidification. Tt is
well known that the heat transfer mechanism in the
solidification process has a significant effect on the
microstructure of the casting, the stripping time and
the generation of residual thermal stress, etc. Unfor-
tunately, the heat transfer phenomenon in casting pro-
cessing is very difficult to observe from experimental
studies due to the opaqueness and high melting point
that most metals have. Under such a situation,
numerical simulations have received considerable
attention during the past decades. However, most of
the techniques that have been developed for sol-
idification problems such as those in refs. [1-9] pose
numerical instability even for rectangular casting
‘without” mold. A detailed discussion on this point
can be found in ref. [10].

In mold—casting systems, there are three regions
{namely, the mold, the solidified metal and the molten
metal) in the entire physical domain in the course of
the solidification process. Under practical situations,
all of these regions possess arbitrary shapes. To adapt
to the complex geometries, grid generation techniques
have been employed by many previous investigators.
For instance, Kroeger and Ostrach [11] used the
method of conformal mapping to generate grid sys-
tems for each of the solid and liquid regions in a

continuous casting process. Gilmore and Gueeri [12]
obtained grid systems for an angle bend and a ply
drop by using Poisson equations. However, these
methods are very complex especially when the casting
possesses a highly sinuous shape. To simplify the com-
putations, the influence of the mold on the casting is
estimated through the use of a boundary condition
imposed on the mold—casting interface [11-13] instead
of solving the heat conduction inside the mold. This
treatment will undoubtedly introduce significant
errors into the solution. In some commercial com-
puter codes, both regions of casting and mold are
approximated with brick-type mesh [14-16] such that
computations can be performed on a Cartesian coor-
dinate system. However, this approximation is restric-
ted to the use of small grids.

Generally speaking, the thermophysical properties
are different in the above-mentioned three regions.
Without particular treatment, the thermophysical
property jumps existing at the interface of these
regions would cause serious numerical instability.
This situation will be even worse when the mold-
casting interface has an arbitrary shape. In addition,
the shrinkage of the casting and/or the thermal expan-
sion of the mold during the solidification process
would form gaps at the mold-casting interface. This
gives rise to considerable thermal contact resistance.
All of these facts render the numerical computations
very difficult when solving the solidification problem
of mold—casting systems. Fortunately, the weighting
function scheme proposed in ref. [10] solves problems
with discontinuous thermophysical properties. In the
use of this particular numerical scheme, the tem-
peratures at the grid points are directly related to the
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NOMENCLATURE
a weighting factors in discretized equations W, total thermal resistance in the interval
¢ dimensionless specific heat, pC,/(pCp)* [W, P}
Cp specific heat [Jkg 'K '] w ratio of the hatched region to the size of

E a point defined in Fig. 2

E, total thermal resistance in the interval
[P. E}

I dimensionless latent heat or fraction of
liquid inside a control volume,
(H—-A)/AH

H total enthalpy Jkg ™', H=AIf T < T,
and H=A+AHIfT> T,

h grid size, h = Ax = Ay

K thermal conductivity [Wm 'K ']

k dimensionless thermal conductivity,
K/K*

L length of the mold [m]

N a point defined in Fig. 2

N, total thermal resistance in the interval

[P, N]

P point (x;, ;)

PCM phase change material

R, thermal contact resistance at the mold—
casting interface [m* K W]

re dimensionless thermal contact resistance,
R.K*/h

S a point defined in Fig. 2

$ aspect ratio

S; total thermal resistance in the intcrval
(S, P]

Ste  Stefan number, C¥(T,—T,)/AH
T temperature [K}
1 time [s]
T: freezing point of the PCM [K]
initial and ambient temperature [K],
T, <T;<T,
w a point defined in Fig. 2

control volume B, see Fig. 3

X, Y coordinates [m]

x, 3 dimensionless coordinates, ¥ = X/L and
y= YL

Greek symbols
% thermal diffusivity [m?s "]

AH  latent heat of the PCM [Jkg ']

Ax, Ay mesh size of the grid system

At time step

0 dimensionless temperature,
(T-TH(To-T.,)

0, dimensionless freezing point,

(T =T H(To—T.,.)
A sensible heat [J kg™'], {7, C» dT
P density [kg m 7]
o Ste/(1 + Ste)

T dimensionless time, / go*/L".
Superscripts
* thermophysical properties of the liquid

PCM at its freezing point T'}.

Subscripts
0 quantities at previous time step, T — At
c chill block
E,N,S, W points E, N, Sand W,
respectively
quantities at point P(x;, y;)
mold
point P
right-hand side of an algebraic
equation.

.

A~ w3

total thermal resistances between two adjacent grid
points. Hence, the arbitrary shape and the thermal
contact resistance at the mold—casting interface can
be easily treated without the need of coordinate trans-
formation or grid generation. This seems to be the
unique feature of the weighting function scheme. In
the present study, the weighting function scheme [10]
is employed to solve the solidification process of an
arbitrarily shaped phase-change-material (PCM)
inside a rectangle mold. For simplicity, the PCM is
assumed to have a distinct freezing point. The latent
heat evolved from each control volume during the
solidification process is rigorously evaluated by using
the enthalpy formulation proposed in ref. [10]. This
enthalpy method has been proven to provide both
good numerical stability and accuracy elsewhere [10].

Numerical results of the moving solidification fronts
inside the PCM are presented under various par-
ameters. The effects due to the use of chill blocks are
also investigated.

THEORETICAL ANALYSIS

In many casting problems, the molds possess simple
exiernal shapes such as a cylinder, cube or rectangular
parallelepiped, even though the casting is arbitrarily
shaped inside. In the present investigation, a typical
two-dimensional mold—casting system of this type as
shown in Fig. 1 is studied. The size of the mold is
0< X< Land 0< Y <0.75L. The rectangular uni-
form mesh system of 97 x 73 grid points provided in
Fig. 1 is employed for the present computations. For
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y=0.75 g

1

F1G. 1. A typical mold—casting system with a Cartesian grid
system of 97 x 73 grid points.

simplicity, it is assumed that the cavity is initially filled
with a superheated PCM at a uniform temperature
T, while the mold is at the ambient temperature T,
that is below the freezing point of the PCM. Sol-
idification thus starts from the mold—casting interface
toward the centroid (roughly) of the casting as time
elapses. During the solidification process, the outer
surface of the mold is maintained at the ambient tem-
perature T,,. The natural convection inside the liquid
phase of the casting is assumed negligible.

After imposing these assumptions and introducing
the following dimensionless variables

x=X/L y=Y/L k=K/K* c¢=pCp/(pCp)*
Ste = CHTo—T,)/AH 0= (T—-T,)[(Ty—T.)
g = Ste/(1+Ste) 1= toa*/L? 4y

the energy conservation equations in the casting and
the mold are expressible, respectively, as

of o0 o ( 00 0 (, 00
(I—G)E +0’Ca = a<ké}) +(’7‘_]/'<k(3_}’> (2)

a0 a a0 0 00
wqmnlen)tnllg) O
where the subscript ‘m’ appearing in equation (3)

denotes the thermophysical properties of the mold.
The associated initial and boundary conditions are

0(x,y,0) = 1 inside the casting

0(x,y,0) =0 inside the mold

0(0,y,7) =0(1,y,7) =0

0(x,0,1) = 6(x,s,7) = 0. 4)

In the dimensionless transformation (1), the super-
script “*’ denotes the thermophysical properties of the
liquid phase of the PCM at its freezing point T} . As
suggested by Lee and Tzong [10], the dimensionless
time 7 is defined in terms of the Stefan number. Such a
treatment has been proven to provide good numerical
stability [10].

It is noteworthy that equation (2) covers the entire
PCM including the liquid-solid interface. This has
been proven by Shamsundar and Sparrow 1] and
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Voller and co-workers {4, S]. The two terms on the
left-hand side of equation (2) are the changing rates
of the latent heat and the sensible heat during the
solidification process. They are split from the total
enthalpy H (ie. H=Aif T< T;and H =A+AH if
T > T;). The symbol f is the dimensionless latent
heat (H—A)/AH. Its value is unity in the liquid phase
and zero in the solid phase. Thus, f stands also for
the fraction of liquid phase. More information on this
particular enthalpy formulation can be found in ref.
[10].

The energy conservation for the mold is a con-
ventional transient heat conduction problem as pre-
sented in equation (3). In addition to equations (2)—
(4), there could be a thermal contact resistance
between the mold and the casting. As mentioned earl-
ier, an air gap forms at the mold—casting interface due
to the contraction of the casting and the expansion
of the mold. The formation of an air gap significantly
decreases the heat transfer rate from casting to mold.
Hence, the thermal contact resistance at the mold—
casting interface cannot be neglected in practical
applications. Unfortunately, very little information is
available on the growth, distribution and size of the
air gap during the solidification process. Isaac er al.
[17, 18] estimated the thermal contact resistance from
the directly measured air gap. Similar attempts were
also undertaken by Flach and Ozisik [19, 20] based
on known temperature data at a few locations inside
the solids. The air gap for castings of rectangular
shape as studied by Isaac et al. [17, 18] was found
essentially increasing as time elapsed. However, this
may not be true for a complex casting as illustrated
in Fig. 1. No air gap is expected in a region where
the casting has a cavity with a small mouth (see the
location indicated by C in Fig. 7 for example). Hence,
the thermal contact resistance of refs. [17-20] cannot
be directly applied on the present problem. More stud-
ies on the variations of thermal contact resistance are
needed. The purpose of this paper is to propose
a numerical technique that efficiently solves the
solidification of arbitrarily shaped casting in mold—
casting system. Although the present methodology
handles the variable thermal contact resistance with-
out difficulties, constant thermal contact resistance
is assumed in the present computations due to the
lack of reliable information.

NUMERICAL SOLUTION METHOD

Equations (2)—(4) constitute a conjugate heat trans-
fer problem for the mold—casting system. Equation
(2) is for the casting, while equation (3) applies to the
mold. As demonstrated in Fig. 1, a uniform Cartesian
grid system (x;, y;) with x;, = (i— 1A and y, = (j—Dh
is employed for the entire physical domain, where
h = Ax = Ay is the step size. Figure 2 shows a grid
point P(x;, y;) and its four neighbors (points W, E, S
and N) with E denoting east, etc. The dashed lines are
the boundaries of the control volume of point P. This
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Solid \ Liquid

Fig, 2. A solidification front passing through a control
volume.

control volume will be referred to as *the control
volume P’ in the present study for simplicity.

If all of the five points and the control volume P
are located in the casting, then equation (2) can be
discretized by using the weighting function scheme
proposed in ref. [10]. This leads to the algebraic equa-
tion for pure heat conduction case

awl,_\ ,+ag0;,  ;+asb,, +an ;o +apl,; = ag

(5

aw =h/W, ae=hlE, as=h/S; av=hN,

Qp = — Gy — g —ds —dy — 6C_ R AT
ag = (B*AD[(1 —o)(f=fo)i—olcbo)i ] (6)

where the subscript ‘0’ denotes quantities at the pre-
vious time (1, = T— A7) and

R Yo ]
W,-:Ln'/;dx EI:L kd'\
i

Y Yier ]
S’ - J:; r}zd/ Ni B J:‘; /;: dyA (7)

It appears that the quantities W, E;, S;and N, defined
in equations (7) are, respectively, the overall thermal
resistances in the intervals (W, P}, [P, E}, [S, P} and
[P, N]. Due to the lack of detailed information about
the variation of the thermal conductivity & between
two adjacent grid points, the thermal resistance 1/k is
assumed to have a linear variation in cach of the
intervals. Hence

aw = 2kyhp/(kw +kp)

ap = 2kgkp/(ke + k)

as = 2kskpi (ks +hp)

an = kenikp (ki + ko). (8)

However, for most PCM, the thermal conductivity of
the solid phase is quite different from that of the liquid
phase. Thus, equations (8) would not be true if
the solidification front is located inside the control
volume P as illustrated in Fig. 2. Suppose the
solidification front intersects the line WP at point W*
and the line SP at point S*, i.e. 0% = 6= 0,. Under
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such a situation, the overall thermal resistance in
[W. P] should be evaluated from

P 1 W* i e I
W, = f de = J d.v+J dx. (9)

W W l\ W k

The assumption of linear thermal resistance variation
in each of the subintervals [W, W*} and [W*, P yields

ay = 2(t=kwk(0: )/ (ky +K(07))
+ 27kpk (0F) (ko +K(0F))  (10)

where 7y = W*P/WP and the notations k(0;) and
k(8;) represent the thermal conductivity at 8, and
0F . The weighting factor ag can be evaluated in a
similar manner. In case point P and its four neighbors
are all located inside the mold, the discretized equa-
tions would be the same as equations (5)-(8) with
g=1.

When control volume P covers both casting and
mold, the relationship among the tcmperatures of
point P and its four neighbors would be governed by
both equations (2) and (3) as well as the thermal
contact resistance at the mold—casting interface. Sup-
pose grid point A is on one side of the mold—casting
interface, while one of its neighbors (point B} is on
the other side as illustrated in Fig. 3. Generally speak-
ing, the mold—casting interface would not “happen’ to
coincide with the interface of two adjacent control
volumes. This implies that part of control volume A
(see the right upper corner, for instance) might be
inside the casting, when point A is located in the
mold. Under such a situation, the temperature and
the thermophysical properties of this particular part
could be very different from that of point A, especially
when the thermal contact resistance is large at the
mold-casting interface. Hence, the latent heat and
sensible heat evolved from this part during the
solidification process should not be treated as heat
generation from point A. In the present study, this
energy cvolution is regarded as that belonging to con-
trol volume B. The sensible heat released from the
mold region covered by control volume B (see the left
lower corner of control volume B) is treated similarly.
As a result, all of the energy evolution from the
hatched region as shown in Fig. 3 is regarded as heat
generation from control volume B. Based on this

Mold C'\Casting T

F16. 3. Two adjacent control volumes covering both the
mold and the casting.
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assumption, the discretized energy equation for point
B(x,, y,) is expressible as

(aw)s0i_ 1 ;+{(ae)sds 1 ;+{as)sb: 1
+ (aN)Bei,j+ 1+ (aP)BHI‘,j = (ag)p

(aw)s = KW, (ap)s = HE; (as)p = A/S,;

(11)

{an)s = h/Nj (ap)s = —(aw)s —{ae)s

—{(as)s— (an)s —woc; ;i jAT

(ap)s = (hz/AT)[(] —U)(f“fo)i,j“WO'(CBO)L]‘] (12)

where point P coincides with point B and the notations
(a»)g. (aw)s, (ag)s, ctc. represent the weighting factors
when the governing equation is discretized at point B.
The symbol w is the ratio of the hatched area to the
area of control volume B. It could have a value of
larger than unity. The f-value in equation (12) is the
ratio of the liquid area inside the hatched region to
the area of control volume B. This implies that the /-
value is always equal to or smaller than w.

It should be noted also that there might exist a
significant thermal contact resistance at the mold-
casting interface. Thus, care must be exercised in
computing the integrations in equations (7). Let Q
be the intersection point of the mold-casting inter-
face and the line AB. From equation (7}, the overall
thermal resistance W, can be evaluated by

"B

W, = Bld~ Qld Id
i Ak = Akm x+r¢+Lk x

where r. = R.K*/h is the dimensionless thermal con-
tact resistance at the mold—casting interface (point Q).
The overall thermal resistance S, in the interval lying
to the south of point B can be determined similarly.
The algebraic equation for point A is the same as that
for point B {equations (11} and (12)) with ¢ = 1 and
w being the ratio of the dotted area (see Fig. 3) to the
area of control volume A. Due to the assumption of
no natural convection effect, the weighting factors
(ax) and (ay ) have the same value.

After discretizing the governing equations on each
of the grid points and imposing the boundary con-
ditions, one obtains a system of algebraic equations
in the matrix form

(13)

(4]{6} = {B} (14
where [4] is a square matrix of order M and {B} is
an M dimensional vector with M being the total
number of grid points. In the present study, A has
a value as large as 97 x 73 = 7081. Fortunately, the
coefficient matrix [A4] has only five nonzero diagonals.
Hence, equation (14) can be efficiently solved by
employing the SIS solver {21]. The numerical pro-
cedure is essentially the same as that presented in ref.
[10] for the case without mold.
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RESULTS AND DISCUSSION

Numerical results were obtained for the mold—cast-
ing system as shown in Fig. 1 under various important
parameters such as Stefan number (Ste), thermal con-
tact resistance at mold-casting interface (r.) and ther-
mophysical property of the mold (&, and ¢,). The
effects due to the use of chill blocks were also inves-
tigated. The present study emphasizes the effects of
thermophysical properties of the mold on the sol-
idification process. In addition, the effects of tem-
perature-dependent thermophysical properties of the
casting have been studied in detail in refs. [10, 22}.
Hence, the thermophysical properties were assumed
constant inside the entire casting including both liquid
and solid phases for convenience. For simplicity, the
dimensionless freezing point 6; = 0.8 was used for all
of the cases studied in the present investigation.

Figure 4 presents the solidification fronts at each
time step under the parameters, Ste =75, r.=0,
kn = 2, ¢, = 2 and the time step At = 0.002. The solid
curves are the solidification fronts obtained by using
the grid size of & = 1/96, while the dashed curves are
based on a coarser grid 4 = 1/48. Thanks to the use
of the particular enthalpy formulation proposed in
ref. [10], the numerical results of solidification front
possess smooth profiles as observable from Fig. 4.
From the solid curves, it is seen that the solidification
front at each time step forms an enclosed curve. It
moves inward from the mold—casting interface to a
location near the centroid of the casting. At the very
beginning of the solidification process, the freezing
rate of the casting is quite fast due to large temperature
difference. Such a situation is particularly pronounced
at the northeast corner of the casting where the surface
to volume ratio is large. This is consistent with the
physical reasoning.

From a comparison between the solid and dashed
curves shown in Fig. 4, the numerical results are seen
to change only a little even if the grid size is doubled.
In the case of the coarse grid system, however, there
would be not enough grid points to handie the profile
of the solidification front when the casting is about to
completely solidify. Hence, a heavy underrelaxation

Ste=5, r =0, k=2, e, =2
AT=0.002

Ax=Ay=h

FiG. 4. Influence of grid size on solidification fronts (with
time increment 0.002) for Ste =5, r. = 0, k, =2, ¢, = 2.
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Ste=5, r,=0, km=2, cm=2
Ax=Ay=h=1/96

----- AT=0.001
—— AT=0.002

F1G. 5. Influence of time step size on the solidification fronts
(with time increment 0.002) for Ste =5, r. =0, k, =2,
C

factor (small SOR) is generally needed for a better
solution convergence rate. To achicve both high res-
olution and good numerical stability, the grid system
with the step size # = 1/96 (see Fig. 1) is used hereafter
in the present study.

To examine the influence ot the time step At on the
resulting solidification front, the same problem as in
Fig. 4 is resolved on a smaller time step (At = 0.001).
The result is represented by the dashed curves in Fig.
5 with a time-increment of 0.001. The result based on
At = 0.002 is also presented in Fig. 5 with solid curves
for comparison. It appears from Fig. 5 that the
numerical result based on the present method is not
sensitive to the time step. In fact, a larger time step
would provide a better numerical stability in the use
of the present enthalpy method. For instance, in the
present case, the optimum successive over-relaxation
factor is about SOR = 0.2 for Az = 0.002 as com-
pared to SOR = 0.1 for At = 0.001. This important
feature of the present enthalpy formulation has been
well-discussed in refs. [10, 22].

Figure 6 shows the numerical result of solidification
fronts in the case when the Stefan number is decreased
to Ste = 1, while all of other parameters are main-
tained the same as in Fig. 4. As defined in equation
(1), the Stefan number stands for the relative import-

Ste=1, rc=0, km=2, cm=2
Ar=0.002

FiG. 6. Solidification fronts with time increment 0.002 for
Ste=1,r,=0,k,=2,¢,=2.
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ance of sensible heat and latent heat. A small Stefan
number means Jarge latent heat. Thus, in the casc with
a small Stefan number it is expected that the casting
will take longer to completely solidify. This can be
clearly seen by comparing the solidification {ront in
Fig. 6 with that in Fig. 4. For instancc, the total
solidification time is T = 0.0210 (r = 0.0420L*/x*) for
Ste = 1 as compared to 7 = 0.0121 (1 = 0.0145L%/2*)
for Ste = 5. In the case of a small Stefan number,
when the solidification is going to finish, the entire
liquid "pool” would be essentially isothermal due to
large latent heat evolution. For cxample. for the case
of Ste = 1. the maximum temperature in the liquid
phase is 0, = 0.8051 at 7 =0.012, that 1s, only
slightly higher than the freczing point 0; = 0.8. Under
such a situation, the location of the solidification {ront
is very difficult to identify from the temperature solu-
tion. This interpolation error might have produced
the sinuous profiles for the solidification front at
7 > 0.012 as observable from Fig. 6.

The solidification fronts based on the parameters
Ste=5,r.=1, k, =2, ¢,, =2 are presented in Fig.
7. This set of parameters is the same as that in Fig. 4
except for the thermal contact resistance r, = 1. The
time step used in the computations is At = 0.01. Like
an insulator along the boundary of the casting, the
thermal contact resistance prevents the conduction of
heat from the casting to the mold. Thus, heat accumu-
lates along the boundary of the casting such that the
occurrence of solidification is depressed especially at
the concave boundaries indicated by A, B and C where
the casting has a small surface to volume ratio. This
might account for the fact that solidification occurs
only at some convex corners of the casting at the
beginning stage of the casting process. Due to this
situation, the solidification front could intersect the
mold-casting interface (see the solidification front
labeled ‘b’ for example). This characteristic is different
from that of Fig. 4, a case without thermal contact
resistance. Physically speaking, without the ‘pro-
tection’ of thermal contact resistance, the initial tem-
perature jump (7T, — 7T, ) at the mold-casting interface
would start the solidification immediately along the

Ste=5, ro=1, k=2, c =2
AT=0.01

Fi1G. 7. Solidification fronts with time increment 0.01 for
Ste =5, r,=1.k,=2,¢,=2.

m m
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boundaries of the casting. As a result, the sol-
idification front is essentially parallel to the mold-
casting interface at the beginning stage of sol-
idification process as observable from Fig. 4. From
Fig. 7, the thermal contact resistance r. = 1 is seen to
increase the total solidification time from 7 = 0.0121
(t = 0.0145L%/a*) to T = 0.0824 (¢ = 0.0988L%/a*) as
expected.

Slow solidification rate can also be encountered
when the mold has poor thermal conductivity and/or
specific heat. To clarify this point, the solidification
fronts based on Ste = 5,r, = 0,k,, = 0.2, c,, = 0.5 are
shown in Fig. 8. The time step used in the com-
putations was Az = 0.00S. From Fig. 8, it is seen that
the total solidification time increases to 7 = 0.0456
(r = 0.0548L%/a*) due to the poor thermophysical
properties of the mold. However, the characteristics
of the solidification fronts in Fig. 8 are different from
those in Fig. 7 in some respects. Due to the lack of
thermal contact resistance, the solidification front in
Fig. 8 is roughly parallel to the boundary of the casting
as in Fig. 4. However, heat might also accumulate
at the strongly-concave boundaries, if the thermal
conductivity of the mold is sufficiently small. Such a
phenomenon can be found in the regions indicated by
A, B and Cin Fig. 8.

From Figs. 7 and 8, it appears that solidification
near the concave boundaries of the casting might be
depressed if the mold has either poor thermophysical
properties or large thermal coniact resistance. This
situation would result in casting defects on the con-
cave surfaces of the casting. Unfortunately, such a
difficulty is encountered in many sand casting
processes. One popular method in foundry technology
is to put chill blocks inside the mold to improve the
solidification rate near the concave surface of the cast-
ing. Figure 9 reveals the solidification fronts under the
effects of three chill blocks that possess good ther-
mophysical properties (k.=35 and ¢.=2). The
locations of these chill blocks are shown also in Fig.
9. In the computations, all of the physical paramerers
are the same as that in Fig. 8. From Fig. 9, one sees
that the solidification rate near the concave surfaces

Ste=5, r,=0, k,,=0.2, c,,=05
AT=0.005

F1G. 8. Solidification fronts with time increment 0.005 for
Ste=5,r.=0,k,=02,¢,=0.5.
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Ste=5, ro=0, k=02, ¢ =05
AT=0.002, k.=5, c =2

FiG. 9. Effect of chill blocks on solidification fronts (with
time increment 0.002) for Ste = 5. r. = 0, k,, = 0.2, ¢,, = 0.5,
k.=5¢=2.

is significantly improved by the chill blocks. In
addition, the total solidification time is reduced sig-
nificantly from 7 = 0.0456 without chill to 7 = 0.0182
with chills. During some time intervals, the liquid
phase separates into two isolated regions due to the
effect of chill blocks as observable from the curves
labeled ‘b’ and ‘g’ in Fig. 9. The present numerical
technique seems to pose no numerical difficulty for
this ‘multiple-region’ problem.

CONCLUSION

An efficient enthalpy formulation developed pre-
viously was employed in the present study for an
arbitrarily shaped casting in mold—casting system. A
particuiar treatment on the evolution of the latent
heat was proposed for grid cells covering both mold
and casting. Thanks to the use of the weighting func-
tion scheme, all of the computations could be per-
formed in the conventional Cartesian coordinates
without recourse to coordinate transformation or grid
generation. In addition, the weighting function
scneme was found to solve the conjugate mold—casting
system quite efficiently even in the presence of thermal
contact resistance at the mold—casting interface. From
the numerical results, it is seen that for a casting
having large latent heat, quite a long time would be
needed for the casting to completely solidify. In the
presence of thermal contact resistance, heat accumu-
lates along the boundary of the casting such that
solidification occurs only at some convex corners of
the casting at early stage of the process. As expected,
both thermal contact resistance and the use of a mold
with poor thermophysical properties depress the
solidification rate. However, their solidification fronts
show different characteristics. When either the mold
has poor thermophysical properties or the thermal
contact resistance is large, serious heat accumulation
would occur on the concave surface of the casting.
This undesirable situation can be improved by the use
of chill blocks. Under some conditions, the liquid
phase might separate into two or more isolated
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gions. The present numerical technique solves such

a problem as well.

Acknowledgements—The authors wish 1o express their
appreciation to the National Science Council of the Republic

of

China in Taiwan for the financial support of this work

through the project NSC80-0401-E007-12.

REFERENCES

. N. Shamsundar and E. M. Sparrow, Analysis of multi-
dimensional conduction phase change via the enthalpy
model, ASME J. Heat Transfer 97, 333--340 (1975).

. G. E. Schneider and M. J. Raw, An implicit solution
procedure for finite difference modeling of the Stefan
problem, 4744 J. 22, 1685-1690 (1984).

. G. E. Schneider, Computation of heat transfer with solid/
liquid phase change including free convection, Af4A4 J.
Thermophysics Heat Transfer 1, 136-145 (1987).

. V. R. Voller, Interpretation of the enthalpy in a dis-
cretized multidimensional region undergoing a melting/
freezing phase change, Jnt. Commun. Heat Mass Transfer
10, 323-328 (1983).

. V.R.Voller, M. Cross and N. C. Markatos, An enthalpy
method for convection/diffusion phase change, /nt. J.
Numer. Meth. Engng 24, 271-284 (1987).

. W.D. Bennon and F. P. Incropera, A continuum model
for momentum, heat and species transfer in binary
solid-liquid phase change systems—I. Model formula-
tion, Int. J. Heat Mass Transfer 30, 2161-2170 (1987).

. W.D. Bennon and F. P. Incropera, A continuum model
for momentum, heat and species transfer in binary solid
liquid phase change systems—I1. Applications to sol-
idification in a rectangular cavity, /nf. J. Heat Muss
Transfer 30, 2161 2170 (1987).

. G. E. Bell, On the performance of the enthalpy method,
Int. J. Heat Mass Transfer 25, 587-589 (1982).

. N. Shamsundar and E. Rooz, Numerical methods for
moving boundary problems. In Handbook of Numerical
Hear Transfer. Ch. 18, pp. 760-763. Wiley, New York
(1988).

. S. L. Lee and R. Y. Tzong, An enthalpy formulation for
phase change problems with a large thermal diffusivity
jump across the interface, Int. J. Heat Mass Transfer 34,
1491-1502 (1991).

. P. G. Kroeger and S. Ostrach, The solution of a two-

R. Y. TzonG and

20.

21

S. L. Lkg

dimensional freczing problem including convection
effects in the liquid region, Ini. J. Heat Muass Transfer
17, 1191 1207 (1974).

. S. D. Gilmore and S. . Gueeri, Solidification in aniso-

tropic thermoplastic composites, Polvimer Composites
11, 406-416 (1990).

. K. Davey and S. Hinduja, Modelling the transient ther-

mal behavior of the pressure die-casting process with the
BEM. Appl. Math. Modelling 14, 394409 (1990).

. R. ] Kelly, Solidification of the candidate hammer cast-

ing using C.AS.T. In Modelling of Casting and Welding
Process 1V (Edited by A. F. Giamei and G.J. Abba-
schian), pp. 789-803. The Minerals, Mectals and
Materials Society, Pennsylvania (1988).

. K. Anzai, T. Uchida and E. Niyama, Solidification

simulation and calculation using the HICASS casting
CAD system. In Modelling of Casting and Welding
Process 1V (Edited by A. F. Giamei and G.J, Abba-
schian), pp. 805-816. The Minerals, Metals and
Materials Society. Pennsylvania (1988).

P. N. Hansen and P. R. Sahm, Modeling the sol-
idification process in a steel hammer casting using the
GEOMESH software system. In Modelling of Casting
and Welding Process IV (Edited by A. F. Giamei and
G. J. Abbaschian), pp. 817-823. The Minerals, Metals
and Materials Society, Pennsylvania (1988).

. I. Isaac, G. P. Reddy and G. K. Sharma, Experimental

investigation of the influence of casting parameters on
the formation and distribution of air gap during the
solidification of castings in metallic molds, AFS Trans.
93, 29-34 (1985).

. 1. Isaac, G. P. Reddy and G. K. Sharma, Variations of

heat transfer coefficients during solidification of castings
in metallic moulds, The British Foundryman 78, 465-468
(1985).

. G. P. Flach and M. N. Ouzisik, Periodic B-spline basis

for quasi-steady periodic inverse heat conduction, Int. J.
Heat Mass Transfer 30, 869-880 (1987).

G. P. Flach and M. N. Ozisik, Inverse heat conduction
problem of periodically contacting surfaces, ASME J.
Heat Transfer 110, 821--829 (1988).

S. L. Lee, A strongly implicit solver for two-dimensional
elliptic differential equations, Numer. Heat Transfer 16B,
161--178 (1989).

. W. Y. Raw and S. L. Lee, Application of weighting

function scheme on convection-conduction phase
change problems, Int. J. Hear Mass Transfer 34, 1503
1513 (1991).

SOLIDIFICATION D'UNE COULEE DANS UN MOULE DE FORME QUELCONQUE

Résumé—On applique la formulation enthalpique au mécanisme de solidification d'une coulée de forme
arbitraire dans un moule. L'effet de résistance thermique de contact & Uinterface moule-coulée est aussi
étudié. On conduit les caleuls dans un systéme de coordonnées rectangulaires sans recours a unc trans-
formation de coordonnées ou 4 une génération de grille pour une forme arbitraire de I'interface. On considére
quelques cas pour étudier les effets du nombre de Stefan, des propriétés thermophysiques et de la résistance
thermique de contact sur I'évolution de la solidification. Les résultats numériques sur le front mobile de
solidification sont ¢tudiés dans chaque cas. On considére des blocs refroidisseurs en quelques endroits dans
le moule de fagon qu'il puisse exister plusieurs régions liquides isolées pendant le mécanisme de solidi-
fication. Méme pour un tel probléme ‘multi-région’, la méthode numérique présente montre de bonnes
performances: il n’y a pas besoin d'effort supplémentaire de calcul pour traiter le cas par rapport au cas
sans bloc refroidisseur.
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ERSTARRUNGSVORGANG EINES BELIEBIG GEFORMTEN GUSSTEILS IN EINEM
FORM-GUSSTEIL-SYSTEM

Zusammenfassung—In der vorliegenden Arbeit wird ein Enthalpie-Verfahren auf den Erstarrungsvorgang
eines beliebig geformten GuBteils in einem Form-GuBteil-System angewandt. AuBerdem wird der Einfiull
des thermischen Kontaktwiderstands an der Grenzfliche zwischen Form- und GubBteil untersucht. Alle
Berechnungen werden in kartesischen Koordinaten durchgefithrt, trotz der willkiirlichen Form der
Grenzfliche. Ein Einzonen-Modell ist zusammen mit Gewichtungsfunktionen in der Lage, das konjugierte
Wirmeiibertragungsproblem effizient zu 16sen. In einigen Fillen wird der EinfluB der Stefan-Zahl, der
thermophysikalischen Stoffeigenschaften und des Kontaktwiderstands (an der Form—GuBteil-Grenzfliche)
auf den Erstarrungsvorgang untersucht. Das numerische Ergebnis fiir die bewegliche Erstarrungsfront
wird fiir jeden Fall betrachtet. Um die Ubereinstimmung der eingesetzten Numerik in einem ganz
bestimmten Fall zu untersuchen, werden Kiihisteine in der Form verteilt, so daB mehr als eine Fliis-
sigkeitsregion wihrend der Erstarrung auftreten kann. Sogar fiir solche Mehrzonen-Probleme zeigt die
numerische Methode gutes Verhalten. Verglichen mit den Féllen ohne Abkiihlsteine sind keine zusitzlichen
Berechnungen notwendig.

3ATBEPJAEBAHUE OTJIMBKH MPOU3BOJILHOM ®OPMBI B CUCTEMAX
KOKMWJIb-OTJIMBKA

Anporamms—B HacTosIEM HCCIIEI0BaHAH YPaBHECHHCE U SHTAJIBIIMH NPHMEHSETCS [IPH ONMUCAHUH TIPO-
1ecca 3aTBEpPAEBaHMA OTJIHBKHM NMPOM3BOJIbHOH (OPMBI B CHCTEME KOKWJIL—OTJIMBKA., PaccMaTpuBaercs
TaKXe BJIHSHHE TEIUIOBOTO KOHTAaKTHOTO CONMPOTHBJIEHHA Ha TPaHHUE pa3fena KOKWIb-OTJHBKa. Bce
pacueThl MPOBOAATCS B JEKAPTOBOH CHCTEME KOOPAMHAT Oe3 mepexona K HOBBIM KOOpAMHATAM M Ge3
06pa30BaHus CETKH IS [POH3BOJIBLHOM HopMbI rpaHuust pasgena. [TloxasaHo, 4To conpsxeHHas 3a1aya
TEIUIONEPEHOCA B CHCTEME KOKHJIb—OTJIMBKA DPEIIAETCH ¢ MCHOJIb30BAHHEM CXEMBI BECOBBIX (YHKUHH.
Hccnenyercs piusnne uncna CredaHa, Tennodu3myecKkux CBOMCTB U TEIIOBOrO KOHTAKTHOTO COMPO-
THBJIEHHA (Ha IPaHHIlEe Pa3/iesa) HAa MPOIIECC 3aTBEPAEBAHMS ISl HECKOJILKHX Cly4aeB. B xaxaoM U3 HuX
YHCICHHO ONPEAENAETCs NOJOXEHHe ABHXYyLierocs (GpoHTa 3arBepneBanus. C HENBIO HCCIENOBAHHSA
3(peKTHBHOCTH NPELTOKEHHOIO YHCIEHHOrO METOAA NPOBEAEHbI pacyeThl MUl CTyYyas MCICIb30BaHHS
KOKHJIBHBIX 6JI0KOB, pacIONIOKEHHBIX B KOKHJIE TAKMM 00pa3oM, YTO MPH OT/IHBKE B NpOLECcce 3aTBEpe-
BaHUA MOTYT MPUCYTCTBOBATL Gojiee 4eM OMH XHAKUH# yyacTok. [Toka3aHO, YTO NMPENCTABIEHHBIN YuC-
NieHHbIA MeTo 3(pexTUBEH Haxe MId pellleHAs TaKoM 3afav, IPH 3TOM HE BO3HKAET HEOOXOANMOCTH
JIOTIOTHMTENILHBIX PACYETOB IO CPABHEHHIO CO CIIyYasiMH OTCYTCTBHSI KOKHIIBHEIX 6J10KOB.
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